Part Number Hot Search : 
T1105 F1160 3805009 C0402 5TRPBF ELECTRIC X9455 IXTM7P15
Product Description
Full Text Search
 

To Download LT1012AIS8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 sn1012 1012afbs lt1012a/lt1012 n op-07 type performance: at 1/8th of op-07s supply current at 1/20th of op-07s bias and offset currents n guaranteed offset voltage: 25 m v max n guaranteed bias current: 100pa max n guaranteed drift: 0.6 m v/ c max n low noise, 0.1hz to 10hz: 0.5 m v p-p n guaranteed low supply current: 500 m a max n guaranteed cmrr: 114db min n guaranteed psrr: 114db min n guaranteed operation at 1.2v supplies the lt ? 1012 is an internally compensated universal precision operational amplifier which can be used in practically all precision applications. the lt1012 combines picoampere bias currents (which are maintained over the full C55 c to 125 c temperature range), microvolt offset voltage (and low drift with time and temperature), low voltage and current noise, and low power dissipation. the lt1012 achieves precision operation on two ni-cad batteries with 1mw of power dissipation. extremely high common mode and power supply rejection ratios, practically unmeasurable warm-up drift, and the ability to deliver 5ma load current with a voltage gain of one million round out the lt1012s superb precision specifications. the all around excellence of the lt1012 eliminates the necessity of the time consuming error analysis procedure of precision system design in many applications; the lt1012 can be stocked as the universal internally compensated precision op amp. n replaces op-07 while saving power n precision instrumentation n charge integrators n wide dynamic range logarithmic amplifiers n light meters n low frequency active filters n thermocouple amplifiers 250v common mode range instrumentation amplifier (a v = 1) picoamp input current, microvolt offset, low noise op amp typical distribution of input offset voltage +in ?n + 2 3 4 lt1012 7 6 lt1012a ?ta01 r3 1m r2 20k r4 19.608k r1 1m r5 975k 6v to ?8v 6v to 18v r6 25k out r1 to r6: vishay 444 accutract thin film optional cmrr trim 50k sip network : vishay 444 pin numbers vishay intertechnology, inc 63 lincoln highway malvern, pa 19355 common mode rejection ratio = 74db (resistor limited) with optional trim = 130db output offset (trimmable to zero) = 500 v output offset drift = 10 v/ c input resistance = 1m common mode input 250v x 3 4 1 2 7 6 5 input offset voltage ( v) number of units 120 160 200 lt1012a ?ta02 80 40 0 ?0 ?0 20 40 0 1140 units from three runs v s = 15v t a = 25 c v cm = 0v protected by u. s. patents 4,575,685 and 4,775,884 features descriptio u applicatio s u typical applicatio u , ltc and lt are registered trademarks of linear technology corporation.
2 lt1012a/lt1012 sn1012 1012afbs supply voltage ...................................................... 20v differential input current (note 1) ...................... 10ma input voltage ......................................................... 20v output short circuit duration .......................... indefinite (note 1) operating temperature range lt1012am/lt1012m (obsolete) ....C 55 c to 125 c lt1012i/lt1012ai ............................. C 40 c to 85 c lt1012ac/lt1012c lt1012d/lt1012s8 ................................ 0 c to 70 c storage temperature range ................. C 65 c to 150 c lead temperature (soldering, 10 sec).................. 300 c consult ltc marketing for parts specified with wider operating temperature ranges. absolute axi u rati gs w ww u package/order i for atio uu w order part number lt1012s8 lt1012is8 lt1012acs8 LT1012AIS8 s8 part marking 1012 1012i 1012a 1012ai top view 1 2 3 4 8 7 6 5 v os trim ?n +in v v os trim v + out + over comp s8 package 8-lead plastic so t jmax = 100 c, q ja = 170 c/w lt1012amh lt1012mh lt1012ach lt1012ch lt1012dh order part number order part number lt1012acn8 lt1012ain8 lt1012cn8 lt1012dn8 lt1012in8 top view v os trim v os trim ?n out v + +in over comp v (case) + 8 4 7 1 5 3 6 2 h package 8-lead to-5 metal can t jmax = 150 c, q ja = 150 c/w, q jc = 45 c/w top view 1 2 3 4 8 7 6 5 v os trim ?n +in v v os trim v + out over comp + n8 package 8-lead pdip t jmax = 100 c, q ja = 130 c/w obsolete package consider the s8 or n8 packages for alternate source
3 sn1012 1012afbs lt1012a/lt1012 v s = 15v, v cm = ov, t a = 25 c, unless otherwise noted. lt1o12am/ac/ai lt1o12m/i lt1o12c symbol parameter conditions min typ max min typ max min typ max units v os input offset voltage 8 25 8 35 10 50 m v (note 3) 20 90 20 90 25 120 m v long term lnput offset 0.3 0.3 0.3 m v/month voltage stability i os input offset current 15 100 15 100 20 150 pa (note 3) 25 150 25 150 30 200 pa i b input bias current 25 100 25 100 30 150 pa (note 3) 35 150 35 150 40 200 pa e n input noise voltage 0.1hz to 10hz 0.5 0.5 0.5 m v p-p e n input noise voltage density f o = 10hz (note 4) 17 30 17 30 17 30 nv ? hz f o = 1000hz (note 5) 14 22 14 22 14 22 nv ? hz i n input noise current density f o = 10hz 20 20 20 fa/ ? hz a vol large signal voltage gain v out = 12v, r l 3 10k w 300 2000 300 2000 200 2000 v/mv v out = 10v, r l 3 2k w 300 1000 200 1000 200 1000 v/mv cmrr common mode rejection v cm = 13.5v 114 132 114 132 110 132 db ratio psrr power suppiy rejection ratio v s = 1.2v to 20v 114 132 114 132 110 132 db input voltage range 13.5 14 13.5 14 13.5 14 v v out output voltage swing r l = 10k w 13 14 13 14 13 14 v slew rate 0.1 0.2 0.1 0.2 0.1 0.2 v/ m s i s supply current 370 500 380 380 m a (note 3) 380 600 380 600 380 600 m a electrical characteristics
4 lt1012a/lt1012 sn1012 1012afbs v s = 15v, v cm = 0v, t a = 25 c, unless otherwise noted. lt1012d lt1012s8 symbol parameter conditions min typ max min typ max units v os input offset voltage 12 60 15 120 m v (note 3) 25 25 180 m v long term input offset 0.3 0.4 m v/month voltage stability l os input offset current 20 150 50 280 pa (note 3) 30 60 380 pa i b input bias current 30 150 80 300 pa (note 3) 40 120 400 pa e n input noise voltage 0.1hz to 10hz 0.5 0.5 m v p-p e n input noise voltage density f o = 10hz (note 5) 17 30 17 30 nv ? hz f o = 1000hz (note 5) 14 22 14 22 nv ? hz i n lnput noise current density f o = 10hz 20 20 fa/ ? hz a vol large-signal voltage gain v out = 12v,r l 3 10k w 200 2000 200 2000 v/mv v out = 10v,r l 3 2k w 200 1000 120 1000 v/mv cmrr common mode rejection ratio v cm = 13.5v 110 132 110 132 db psrr power supply rejection ratio v s = 1.2v to 20v 110 132 110 132 db input voltage range 13.5 14.0 13.5 14.0 v v out output voltage swing r l = 10k w 13 14 13 14 v slew rate 0.1 0.2 0.1 0.2 v/ m s i s supply current (note 3) 380 600 380 600 m a electrical characteristics
5 sn1012 1012afbs lt1012a/lt1012 lt1012am/ai lt1012m/i symbol parameter conditions min typ max min typ max units v os input offset voltage l 30 60 30 180 m v (note 3) l 40 180 40 250 m v average temperature coefficient of l 0.2 0.6 0.2 1.5 m v/ c input offset voltage i os input offset current l 30 250 30 250 pa (note 3) l 70 350 70 350 pa average temperature coefficient of l 0.3 2.5 0.3 2.5 pa/ c input offset current i b input bias current l 80 600 80 600 pa (note 3) l 150 800 150 800 pa average temperature coefficient of l 0.6 6.0 0.6 6.0 pa/ c input bias current a vol large-signal voltage gain v out = 12v, r l 3 10k w l 200 1000 150 1000 v/mv v out = 10v, r l 3 2k w l 200 600 100 600 v/mv cmrr common mode rejection ratio v cm = 13.5v l 110 128 108 128 db psrr power supply rejection ratio v s = 1.5v to 20v l 110 126 108 126 db input voltage range l 13.5 13.5 v v out output voltage swing r l = 10k w l 13 14 13 14 v i s supply current l 400 650 400 800 m a the l denotes the specifications which apply over the full operating temperature range of C55 c t a 125 c for lt1012am and lt1012m, and C 40 c t a 85 c for lt1012ai and lt1012i. v s = 15v, v cm = 0v, unless otherwise noted. electrical characteristics
6 lt1012a/lt1012 sn1012 1012afbs lt1012ac lt1012c symbol parameter conditions min typ max min typ max units v os input offset voltage l 20 60 20 100 m v (note 3) l 30 160 30 200 m v average temperature coefficient of l 0.2 0.6 0.2 1.0 m v/ c input offset voltage i os input offset current l 25 230 35 230 pa (note 3) l 40 300 45 300 pa average temperature coefficient of l 0.3 2.5 0.3 2.5 pa/ c input offset current i b input bias current l 35 230 35 230 pa (note 3) l 50 300 50 300 pa average temperature coefficient of l 0.3 2.5 0.3 2.5 pa/ c input bias current a vol large-signal voltage gain v out = 12v, r l 3 10k w l 200 1500 150 1500 v/mv v out = 10v, r l 3 2k w l 200 1000 150 800 v/mv cmrr common mode rejection ratio v cm = 13.5v l 110 130 108 130 db psrr power supply rejection ratio v s = 1.3v to 20v l 110 128 108 128 db input voltage range l 13.5 13.5 v v out output voltage swing r l = 10k w l 13 14 13 14 v i s supply current l 400 600 400 800 m a the l denotes the specifications which apply over the full operating temperature range of 0 c t a 70 c. v s = 15v, v cm = 0v, unless otherwise noted. electrical characteristics
7 sn1012 1012afbs lt1012a/lt1012 electrical characteristics the l denotes the specifications which apply over the full operating temperature range of 0 c t a 70 c. v s = 15v, v cm = 0v, unless otherwise noted. optional offset nulling and overcompensation circuits input offset voltage can be adjusted over a 800 m v range with a 5k to 100k potentiometer. the lt1012 is internally compensated for unity gain stability. the overcompensation capacitor, c s , can be used to improve capacitive load handling capability, to narrow noise bandwidth, or to stabilize circuits with gain in the feedback loop. note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. note 2: differential input voltages greater than 1v will cause excessive current to flow through the input protection diodes unless limiting resistance is used. note 3: these specifications apply for v min v s 20v and C13.5v v cm 13.5v (for v s = 15v). v min = 1.2v at 25 c, 1.3v from 0 c to 70 c, 1.5v from C 55 c to 125 c. note 4: 10hz noise voltage density is sample tested on every lot. devices 100% tested at 10hz are available on request. note 5: this parameter is tested on a sample basis only. lt1012a ?ec01 + 2 3 4 v 5 lt1012 1 8 7 6 5k to 100k pot v + out c s lt1012d lt1012s8 symbol parameter conditions min typ max min typ max units v os input offset voltage l 25 140 30 200 m v (note 3) l 40 45 270 m v average temperature coefficient of l 0.3 1.7 0.3 1.8 m v/ c input offset voltage i os input offset current l 35 380 60 380 pa (note 3) l 45 80 500 pa average temperature coefficient of l 0.35 4.0 0.4 4.0 pa/ c input offset current i b input bias current l 50 420 100 420 pa (note 3) l 65 150 550 pa average temperature coefficient of l 0.4 5.0 0.5 5.0 pa/ c input bias current a vol large-signal voltage gain v out = 12v, r l 3 10k w l 150 1500 150 1500 v/mv v out = 10v, r l 3 2k w l 150 800 100 800 v/mv cmrr common mode rejection ratio v cm = 13.5v l 108 130 108 130 db psrr power supply rejection ratio v s = 1.3v to 20v l 108 128 108 128 db input voltage range l 13.5 13.5 v v out output voltage swing r l = 10k w l 13 14 13 14 v i s supply current l 400 800 400 800 m a
8 lt1012a/lt1012 sn1012 1012afbs offset voltage vs source resistance (balanced or unbalanced) typical distribution of input offset current typical distribution of input bias current input bias current vs temperature offset voltage drift vs source resistance (balanced or unbalanced) input bias current over common mode range warm-up drift offset voltage drift with temperature of four representative units long term stability of four representative units source resistance ( w ) 1k 1 input offset voltage ( v) 100 1000 100k 10k 300k 1m 3m 10m 30k 3k 10 lt1012a ?tpc01 25 c ?5 c to 125 c v s = 15v input bias current (pa) number of units 120 160 200 lt1012a ?tpc02 80 40 0 120 ?0 60 120 0 1020 units from three runs v s = 15v t a = 25 c v cm = 0v input offset current (pa) number of units 120 160 200 lt1012a ?tpc03 80 40 0 ?20 ?0 60 120 0 1020 units from three runs v s = 15v t a = 25 c v cm = 0v temperature ( c) ?0 ?50 input bias current (pa) ?0 100 0 50 ?00 50 0 100 ?5 25 75 125 undercancelled unit lt1012a ?tpc04 overcancelled unit source resistance ( w ) 1k 0.1 offset voltage drift with temperature ( v/ c) 10 100 100k 10k 1m 10m 100m 1.0 lt1012 ?tpc06 maximum typical 0 0 change in offset voltage ( v) 3 4 5 4 2 1 1 2 3 5 time after power on (minutes) metal can (h) package dual-in-line package plastic (n) or so (s) v s = 15v t a = 25 c lt1012a ?tpc07 time (months) 0 change in offset voltage ( v) 2 6 10 4 ? ? 0 4 8 ? ? ?0 1 2 3 5 lt1012a ?tpc08 ?0 offset voltage ( v) 20 40 60 25 75 0 ?0 ?5 0 50 100 125 ?0 ?0 temperature ( c) lt1012a ?tpc09 common mode input voltage ?5 ?0 input bias current (pa) ?0 ?0 0 20 60 ?0 ? 0 5 10 15 40 v s = 15v t a = 25 o c device with positive input current device with negative input current r in cm = 2 x 10 12 w + lt1012a * tpc5 i b v cm typical perfor a ce characteristics uw
9 sn1012 1012afbs lt1012a/lt1012 0.1hz to 10hz noise common mode rejection vs frequency total noise vs source resistance power supply rejection vs frequency noise spectrum voltage gain vs frequency voltage gain vs load resistance supply current vs supply voltage gain, phase shift vs frequency time (seconds) 0 noise voltage 400nv/division 8 2 4 6 10 t a = 25 c v s = 1.2v to 20v lt1012a ?tpc10 supply voltage (v) 0 supply current ( a) 400 20 25 c 125 c ?5 c 300 5 10 15 500 lt1012a ?tpc13 frequency (hz) 1 140 120 100 80 60 40 20 0 1k 100k 10 100 10k 1m common mode rejection ratio (db) v s = 15v t a = 25 c lt1012a ?tpc14 frequency (hz) 0.1 power supply rejection ratio (db) 100 120 140 100 10k 80 60 110 1k 100k 1m 40 20 v s = 15v t a = 25 c negative supply positive supply lt1012a ?tpc15 frequency (hz) 0.01 voltage gain (db) 60 80 100 100 1k 10k 100k 1m 10m 40 20 ?0 0.1 1 10 0 140 120 lt1012a ?tpc16 v s = 15v t a = 25 c frequency (mhz) 0.01 ?0 gain (db) 20 30 40 0.1 1 10 10 0 200 140 120 100 160 180 gain lt1012a ?tpc17 phase shift (degrees) v s = 15v t a = 25 c phase phase margin = 70 c load resistance (k w ) 1 100k 300k 1m 10m 3m voltage gain 5 21020 v s = 15v v 0 = 10v 25 c 125 c ?5 c lt1012a ?tpc18 frequency (hz) 1 1 current noise density (fa hz) 10 100 1000 10 100 1000 voltage noise density (nv hz) t a = 25 c v s = 1.2 to 20v current noise voltage noise lt1012a ?tpc11 1/f corner 120hz 1/f corner 2.5hz total noise density ( v/ hz) source resistance ( w ) 10 2 10 3 10 4 10 5 10 6 10 7 0.01 1.0 10.0 10 8 0.1 t a = 25 c v s = 1.2v to 20v lt1012a ?tpc12 r s = 2r r r + at 10hz at 1khz resistor noise only at 10hz at 1khz typical perfor a ce characteristics uw
10 lt1012a/lt1012 sn1012 1012afbs common mode range and voltage swing at minimum supply voltage minimum supply voltage, voltage gain at v min small-signal transient response large-signal transient response output short-circuit current vs time slew rate, gain bandwidth product vs overcompensation capacitor closed-loop output impedance small-signal transient response 2v/div 20 m s/div 20mv/div 5 m s/div 20mv/div 5 m s/div a v = +1 a v = +1 c load = 100pf a v = +1 c load = 1000pf short-circuit current (ma) 0 5 125 c time from output short (minutes) 0 ?0 sinking sourcing ?5 ? 15 1 2 ?0 20 10 3 ?5 c 25 c 125 c ?5 c 25 c lt1012a ?tpc19 v s = 15v frequency (hz) 1 0.001 output impedance ( w ) 0.01 0.1 1 10 100 1000 10 100 1 10 lt1012a ?tpc21 100 a v = 1000 a v = +1 i 0 = 1ma v s = 15v t a = 25 c temperature ( c) ?0 v common mode range or output voltage (v) v + 0.3 v + 0.9 v + 1.2 v + ?1.2 75 v + lt1012a ?tpc22 v + 0.6 0 25 125 50 25 100 v + ?0.9 v + ?0.6 v + ?0.3 cm range cm range swing r l = 2k swing r l = 2k swing r l = 10k temperature ( c) ?0 minimum supply voltage (v) 0.8 1.8 1.2 0 50 75 lt1012a ?tpc23 1.4 1.6 1.0 0 200k 100k 400k 300k ?5 25 100 125 voltage gain at minimum supply voltage (v/v) r l = 10k r l = 2k overcompensation capacitor (pf) 0.01 slew rate (v/ s) 0.1 1 100 1000 10,000 lt1012a ?tpc20 0.001 10 1 10 100 1 1000 v s = 15v t a = 25 c gbw slew gain bandwidth product (khz) typical perfor a ce characteristics uw
11 sn1012 1012afbs lt1012a/lt1012 the lt1012 may be inserted directly into op-07, lm11, 108a or 101a sockets with or without removal of external frequency compensation or nulling components. the lt1012 can also be used in 741, lf411, lf156 or op-15 applications provided that the nulling circuitry is removed. although the op-97 is a copy of the lt1012, the lt1012 directly replaces and upgrades op-97 applications. the lt1012c and d have lower offset voltage and drift than the op-97f. the lt1012a has lower supply current than the op-97a/e. in addition, all lt1012 grades guarantee operation at 1.2v supplies. achieving picoampere/microvolt performance in order to realize the picoampere/microvolt level accuracy of the lt1012, proper care must be exercised. for example, leakage currents in circuitry external to the op amp can significantly degrade performance. high quality insulation should be used (e.g. teflon, kel-f); cleaning of all insulating surfaces to remove fluxes and other residues will probably be required. surface coating may be necessary to provide a moisture barrier in high humidity environments. board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs: in inverting configurations the guard ring should be tied to ground, in non-inverting connections to the inverting input at pin 2. guarding both sides of the printed circuit board is required. bulk leakage reduction depends on the guard ring width. nanoampere level leakage into the offset trim terminals can affect offset voltage and drift with temperature. microvolt level error voltages can also be generated in the external circuitry. thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals can exceed the inherent drift of the amplifier. air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature. noise testing for application information on noise testing and calcula- tions, please see the lt1008 data sheet. frequency compensation the lt1012 can be overcompensated to improve capacitive load handling capability or to narrow noise bandwidth. in many applications, the feedback loop around the amplifier has gain (e.g. iogarithmic amplifiers); overcompensation can stabilize these circuits with a single capacitor. the availability of the compensation terminal permits the use of feedforward frequency compensation to enhance slew rate. the voltage follower feedforward scheme bypasses the amplifiers gain stages and slews at nearly 10v/ m s. the inputs of the lt1012 are protected with back-to-back diodes. current limiting resistors are not used, because the leakage of these resistors would prevent the realization of picoampere level bias currents at elevated tempera- tures. in the voltage follower configuration, when the input is driven by a fast, large signal pulse (>1v), the input protection diodes effectively short the output to the input during slewing, and a current, limited only by the output short-circuit protection will flow through the diodes. the use of a feedback resistor, as shown in the voltage follower feedforward diagram, is recommended because this resistor keeps the current below the short-circuit limit, resulting in faster recovery and settling of the output. 4 5 6 output over comp 7 v 8 offset trim 1 2 3 guard in puts v lt1012a * ai01 + applicatio s i for atio wu uu
12 lt1012a/lt1012 sn1012 1012afbs test circuit for offset voltage and its drift with temperature follower feedforward compensation pulse response of feedforward compensation ampmeter with six decade range 50pf 0.01 f 2 3 5 out 10k 5k 6 + lt1012 in lt1012a ?ai03 *resistors must have low thermoelectric potential 50k 100 w 50k v 0 v 0 = 1000v 0s * * * 15v ?5v + 2 3 lt1012 7 4 6 lt1012a ?ai02 5v/div 5 m s/div photo o ?5v 15v 0.1 f 10k current input q1, q2, q3, q4, rca ca3146 transistor array. calibration: adjust r1 for full-scale deflection with 1 a input current ampmeter measures currents from 100pa to 100 a without the use of expensive high value resistors. accuracy at 100 a is limited by the offset voltage between q1 and q2 and, at 100pa, by the inverting bias current of the lt1012 2 7 6 33k 4 3 100 a 10 a 1 a 10k + lt1012 q2 q3 q4 pin 13 ca3146 range 100 a meter 100pa 1na 10na 100na r1 2k 1.2k 549 w 549 w 549 w 549 w 549 w 549 w lt1004c 10k 15v lt1012a ?ta03 q1 applicatio s i for atio wu uu typical applicatio s u
13 sn1012 1012afbs lt1012a/lt1012 amplifier for bridge transducers voltage gain 100 r5 56m r6 56m r2 100k s2 100k s1 100k r1 100k 2 3 out r3 r4 510k 510k 6 + lt1012 v + lt1012a ?ta06 t t saturated standard cell amplifier ?5v 15v 3 2 4 the typical 30pa bias current of the lt1012 will degrade the standard cell by only 1ppm/year. noise is a fraction of a ppm. unprotected gate mosfet isolates standard cell on power down r1 r2 6 7 lt1008 out + 2n3609 saturated standard cell #101 eppley labs newport, r.i. lt1012 lt1012a ?ta05 + 1.018235v typical applicatio s u
14 lt1012a/lt1012 sn1012 1012afbs instrumentation amplifier with 100v common mode range low power comparator with <10 m v hysteresis buffered reference for a-to-d converters amplifier for photodiode sensor lm399 2 7 6 4 3 lt1012a ?ta08 + lt1012 15v 7k 3k *the 1k preload minimizes glitches induced by transient loads 6.5k 1k 1k* 1k out 10v 2n3904 200 2 7 6 1 4 3 lt1012a ?ta10 + lt1012 5v ?v 10k 330k 620k 1k 10k out 2n3904 100k 100k +in ?n 3 v out = 10v/ a r1 5m 1% r2 5m 1% 2 3 out s1 6 + lt1012 lt1012a ?ta07 l a v = 100 all resistors 1% or better 10m 10m 2 3 out 100m 100m 6 7 4 + lt1012 100 w 100k lt1012a ?ta09 ?n +in 15v 15v typical applicatio s u
15 sn1012 1012afbs lt1012a/lt1012 no trims 12-bit multiplying dac output amplifier resistor multiplier r1 10m r2 1k r3 100k r in = r1 v out 2 3 6 + lt1012 r in 1g lt1012 ?ta13 10k r3 r2 1 + ( ) air flow detector input amplifier for 4.5 digit voltmeter 1000pf 15v ?5v 0.1v 1v 10v 100v 1000v to 1v full scale analog to digital converter + 2 3 4 5 9k* lt1012 1k* * ratio match 0.01% fn507 allen bradley decade voltage divider this application requires low bias current and offset voltage, low noise, and low drift with time and temperature 7 6 100k 5% in 0.1v 1v 10v 100v 1000v 9m 900k 90k 10k lt1012a ?ta12 2 1 3 8 7 6 4 3 lt1012a ?ta11 + lt1012 cold junction at ambient mount r1 in airflow. adjust r2 so output goes high when airflow stops 15v 15v out r1 1k 15v + 10m 100k r2 type j r feedback i out1 i out2 lt1012 ?ta14 3 2 6 + lt1012 out when the reference input drops to 0.1v, the least significant bit decreases to the microvolt/picoampere range reference in 0.1v to 10v 12-bit cmos multiplying dac typical applicatio s u
16 lt1012a/lt1012 sn1012 1012afbs +in ?n v 320 w 330 w 40 w 4.3k 4.8k 3.3k 3.3k q19 q18 q39 3.7k 16k 3.7k 3.7k q34 q35 q31 q12 q11 50k 1.5k q23 q40 q41 q42 q38 q37 q43 v + q26 q28 1.5k 40 w 100 w 40 w out q30 q27 q25 1.5k q15 q2 q13 q16 q5 q7 800 w 800 w 22k 22k 1.3k 1.3k 4.2k q8 q14 1.5k q22 q24 q4 q3 q21 q20 q29 q6 q1 q9 q10 s s s trim trim over comp 3k s j1 q17 lt1012a ?sd01 2.5k 30pf 20k q32 q36 q33 1 8 5 7 6 2 3 4 sche atic diagra w w
17 sn1012 1012afbs lt1012a/lt1012 h package 8-lead to-5 metal can (.200 inch pcd) (reference ltc dwg # 05-08-1320) obsolete package u package descriptio .050 (1.270) max .016 ?.021** (0.406 ?0.533) .010 ?.045* (0.254 ?1.143) seating plane .040 (1.016) max .165 ?.185 (4.191 ?4.699) gauge plane reference plane .500 ?.750 (12.700 ?19.050) .305 ?.335 (7.747 ?8.509) .335 ?.370 (8.509 ?9.398) dia .200 (5.080) typ .027 ?.045 (0.686 ?1.143) .028 ?.034 (0.711 ?0.864) .110 ?.160 (2.794 ?4.064) insulating standoff 45 typ h8(to-5) 0.200 pcd 0801 lead diameter is uncontrolled between the reference plane and the seating plane for solder dip lead finish, lead diameter is .016 ?.024 (0.406 ?0.610) * ** pin 1
18 lt1012a/lt1012 sn1012 1012afbs n8 package 8-lead pdip (narrow .300 inch) (reference ltc dwg # 05-08-1510) n8 1002 .065 (1.651) typ .045 ?.065 (1.143 ?1.651) .130 .005 (3.302 0.127) .020 (0.508) min .018 .003 (0.457 0.076) .120 (3.048) min 12 3 4 87 6 5 .255 .015* (6.477 0.381) .400* (10.160) max .008 ?.015 (0.203 ?0.381) .300 ?.325 (7.620 ?8.255) .325 +.035 ?015 +0.889 0.381 8.255 () note: 1. dimensions are inches millimeters *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .010 inch (0.254mm) .100 (2.54) bsc u package descriptio
19 sn1012 1012afbs lt1012a/lt1012 information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights. s8 package 8-lead plastic small outline (narrow .150 inch) (reference ltc dwg # 05-08-1610) .016 ?.050 (0.406 ?1.270) .010 ?.020 (0.254 ?0.508) 45 0 ?8 typ .008 ?.010 (0.203 ?0.254) so8 0502 .053 ?.069 (1.346 ?1.752) .014 ?.019 (0.355 ?0.483) typ .004 ?.010 (0.101 ?0.254) .050 (1.270) bsc 1 n 2 3 4 n/2 .150 ?.157 (3.810 ?3.988) note 3 8 7 6 5 .189 ?.197 (4.801 ?5.004) note 3 .228 ?.244 (5.791 ?6.197) .245 min n 1 2 3 n/2 .160 .005 recommended solder pad layout .045 .005 .050 bsc .030 .005 typ inches (millimeters) note: 1. dimensions in 2. drawing not to scale 3. these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .006" (0.15mm) u package descriptio
20 lt1012a/lt1012 sn1012 1012afbs linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 l fax: (408) 434-0507 l www.linear.com lw/tp 1202 1k rev b ? printed in usa ? linear technology corporation 1991 kelvin-sensed platinum temperature sensor amplifier u typical applicatio 5k* ?5v 20v 2 3 4 ?5v 6 7 + lt1012 * = wire wound resistors all other resistors are 1% metal film trim r2 at 0 c for v 0 = 0v trim r3 at 100 c for v 0 = 10v trim r4 at 50 c for v 0 = 5v in the order indicated positive feedback (r1) linearizes the inherent parabolic nonlinearity of the platinum sensor and reduces errors from 1.2 c to 0.004 c over the 50 c to 150 c range lt1012a ?ta04 r2 100k 10m 10v reference lt1021-10 235k* 392k* rosemount 78s or equivalent r s 5k r1 182k r f * 654k 6.65m r3 1k r4 5k 10k 24.3k 4.75k 200k 619k 100 w at 0 c v out = 100mv/ c ?0 c to 150 c


▲Up To Search▲   

 
Price & Availability of LT1012AIS8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X